455 research outputs found

    Is the Gulf of Mexico Ready for Deep-Ocean Environmental Regulation?

    Get PDF

    Diffraction Analysis of 2-D Pupil Mapping for High-Contrast Imaging

    Full text link
    Pupil-mapping is a technique whereby a uniformly-illuminated input pupil, such as from starlight, can be mapped into a non-uniformly illuminated exit pupil, such that the image formed from this pupil will have suppressed sidelobes, many orders of magnitude weaker than classical Airy ring intensities. Pupil mapping is therefore a candidate technique for coronagraphic imaging of extrasolar planets around nearby stars. Unlike most other high-contrast imaging techniques, pupil mapping is lossless and preserves the full angular resolution of the collecting telescope. So, it could possibly give the highest signal-to-noise ratio of any proposed single-telescope system for detecting extrasolar planets. Prior analyses based on pupil-to-pupil ray-tracing indicate that a planet fainter than 10^{-10} times its parent star, and as close as about 2 lambda/D, should be detectable. In this paper, we describe the results of careful diffraction analysis of pupil mapping systems. These results reveal a serious unresolved issue. Namely, high-contrast pupil mappings distribute light from very near the edge of the first pupil to a broad area of the second pupil and this dramatically amplifies diffraction-based edge effects resulting in a limiting attainable contrast of about 10^{-5}. We hope that by identifying this problem others will provide a solution.Comment: 23 pages, 13 figures, also posted to http://www.orfe.princeton.edu/~rvdb/tex/piaaFresnel/ms.pd

    Population Size Structure and Feeding Biology of Bathynerita naticoidea Clarke 1989 (Gastropoda: Neritacea) from Gulf of Mexico Hydrocarbon Seeps

    Get PDF
    Bathynerita naticoidea is a numerically dominant gastropod in upper continental slope chemosynthetic communities of the northern Gulf of Mexico. A comparison of population size structure at four sites off Louisiana revealed site-specific differences in mean shell size consistent with different recruitment histories and growth rates. Where individuals grow to the largest size, population numbers are low and recruitment seems to be limited. Where individuals grow to the smallest size, populations are high and recruitment seems to be high. These patterns appear to parallel the population size pattern of the beds of Bathymodiolus childressi Gustafson et. al. 1998 inhabited by the snail, which suggests a link between the control of the two. Analysis of gut contents and fecal matter of B. naticoidea and the organic film on the shell surface of B. childressi confirmed initial assumptions that the snail feeds by radular browsing. Free-living bacteria are abundant on mussel surfaces and are ingested by the snail. The presence of bacteria in the gut and feces was, however, lower, possibly because of dilution by mucus and digestion. It is proposed that B. childressi provides more than a passive surface for organic film development. The mussel may control the organic film development, thus controlling availability of food to the snail

    STRANAL-PMC Version 2.0

    Get PDF
    Version 2.0 of the Strain Rate Dependent Analysis of Polymer Matrix Composites (STRANAL-PMC) software has been released. A prior version was reported in Analyzing Loads and Strains in Polymer- Matrix Composites (LEW-17227), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 36. To recapitulate: Modified versions of constitutive equations of viscoplasticity of metals are used to represent deformation of a polymeric matrix. The equations are applied in a micromechanical approach, proceeding upward from slices of unit cells, through the ply level, to the laminate level. The constitutive equations are integrated in time by a Runge- Kutta technique. To predict the ultimate strength of each composite ply, failure criteria are implemented within the micromechanics. The inputs to STRANAL-PMC are the laminate geometry, properties of the fiber and matrix materials, and applied stress or strain versus time. The outputs are time-dependent stresses and strains at the slice, ply, and laminate levels. The improvements in version 2.0 include more rigorous representation of hydrostatic- stress effects in the matrix, refinement and extension of ply failure models, and capabilities to analyze transverse shear stresses. Version 2.0 can be implemented as a material-model code within transient dynamic finite-element codes

    Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    Get PDF
    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

    Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Get PDF
    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model

    Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Get PDF
    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA (Registered), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites

    Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    Get PDF
    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material

    Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    Get PDF
    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite materia
    • …
    corecore